年12月,英国新核观察研究所(NNWI)发布《核能在欧洲氢经济发展中的作用》报告。报告明确了核能在氢经济发展中可以发挥的宝贵作用,呼吁欧洲和各国制定清洁制氢行业发展政策时,应在技术上保持中立,承认可再生能源和核能都是低碳制氢的来源,并以此为基础实施其氢能战略。

01氢能概述

氢不是能源而是一种能量载体,它与电力在许多方面都有着相似之处:二者皆是通过运用多种技术生产出来的、用途广泛的能量。

无论是氢能还是电能在使用过程中都不会产生任何温室气体,如在燃料电池中使用氢能不会产生除水以外的排放物。但是在使用化石燃料生产这两种能量的过程中,上游碳强度较高。如果能够将碳捕集、利用与封存技术(CCUS)应用于化石燃料发电厂,或是将诸如核能和可再生能源等低碳能源作为初始能源应用于生产过程中,就能避开这一缺陷。

电能与氢能之间的关键性区别在于,前者仅由电子组成,而后者则是一种由分子构成的化学能。当下化石燃料在全球范围内的运输使这一区别至关重要,因为分子的能量可存储且稳定输送。除此之外,氢的分子性质使其能够与其他元素结合以制备可用于工业的氢基燃料。在能源储量方面,以石油、天然气和煤炭为主导的全球分子能源市场规模是电力市场的九倍。因此,尽管运用电气化手段减少某些能源使用过程中的碳排放量已成为一种趋势,低碳氢显然将成为能源转型升级中的重要组成部分。

根据国际能源署(IEA)的数据,年全球共生产73.9吨纯氢,另有45吨的氢未与其他气体分离直接应用于工业生产,如生产甲醇和直接还原铁(DRI)。最成熟的制氢技术是甲烷蒸汽转化法(SMR),即选用天然气同时作为原料和燃料,使其与作为氧化剂和氢原料的水发生反应。目前76%的专用氢通过这一技术制出。在典型运行条件下,该过程中有30%-40%的天然气会作为燃料燃烧,而其余的则被分解为氢气和高浓度的二氧化碳。如今,这种方法每年在全球范围内消耗略超过亿立方米的天然气,占全世界天然气用量的6%。甲烷蒸汽转化法(SMR)也是碳排放密集型的,产出每吨氢气的同时会排放10吨二氧化碳。国际能源署数据显示,若将碳捕集、利用与封存技术(CCUS)应用于制氢设备,最多可减少90%的碳排放量,但生产成本会因此上升。世界上其余的专用氢中,绝大多数是使用气化方法由煤炭制出。用这种方法制出的氢气大多产自中国,这里集聚了全球80%以上的煤气化工厂,并且是中国成本最低的制氢方法。

该制氢过程的碳排放量几乎是使用天然气的甲烷蒸汽转化法(SMR)的两倍,制成每吨氢气的同时会产生19吨二氧化碳。因此若要降低碳排放量,需要采用CCUS技术。

水电解技术制氢目前仅占专用氢产量的0.1%,且主要面向有高纯度氢气需求的小众市场。然而,由于预期基础技术成本的降低以及电解氢作为脱碳减排的驱动力在能源转型中发挥的潜在作用,电解法制氢的势头正在上升。该方法将水电解,生成氢气和氧气,每9升水可电解产生1千克氢气,效率约为60%至80%。

电解法制氢的碳排放强度取决于电源的碳强度,因此电解槽能够产生低碳氢。

如果电力系统本身是低碳的,则可以通过电解槽并网来产生低碳氢,或者通过与专用低碳电力来源(如核能或可再生能源)配对的电解槽来实现。专用电解槽方法具有更大的操作弹性,可根据系统需求和市场在发电与制氢之间切换,因此可解决高发电量时可能出现的可再生电力生产过量的问题。

电解法制氢的成本主要由资本成本、输入电价、实际转换效率和年度负荷决定,其中资本成本会随着电解技术和设备生产规模的变化而改变。随着电解槽运行时间增加,资本成本对最终生产成本(即制氢的平准化成本)的影响会减少,电价的影响则会增加。因此,最佳运行条件应为稳定的高负荷因子(依靠充足稳定的电力提供)和低电价。如下方IEA图表所示,与当今主流生产方法相比,使用可再生能源电解制氢的相对成本较高,这是由于电解槽的资本成本较高,且与可调度的基荷能源能源相比,可再生能源提供的容量因子相对较低。

02核能对氢市场发展的贡献

尽管人们对使用先进模块堆和小型模块堆产生的热能来制氢这一方法十分感兴趣,这里我们


转载请注明地址:http://www.huangpihea.com/hphpk/7600.html